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Abstract We introduce the idea of simultaneous heavy precipitation events (SHPEs) to understand
whether extreme precipitation has a spatial organization manifested as specified tracks or contiguous
fields with inherent scaling relationships. For this purpose, we created a database of SHPEs using
ground-based precipitation observations recorded by the daily Global Historical Climatology Network
across the conterminous United States during 1900–2014. SHPEs are examined for their seasonality, spatial
manifestation, orientation, and areal extent. We quantified the spatial distribution of the centroids and
principal axes of SHPEs and their quasi-elliptical manifestations, azimuthal orientations, and areal
extents on the ground. Four seasons, December-January-February (DJF), March-April-May (MAM),
June-July-August (JJA), and September-October-November (SON) are considered to examine the spatial
patterns and associated large-scale atmospheric circulations. Results indicate that there are 54, 58, 103, and
204 SHPEs in DJF, MAM, JJA, and SON seasons, and their longest stretches range on average between 650
and 1,600, between 850 and 1,500, between 950 and 1,550, and between 750 and 1,450 km, respectively.
SHPEs in the DJF, MAM, and JJA seasons occur mostly over the Pacific coast and central and midwestern
United States, respectively. The atmospheric circulation patterns and mechanisms of precipitable water
vapor and moisture transport in the atmosphere are also discussed in relation to these SHPEs. Power laws
explain SHPEs' underlying area scaling behavior in all the four seasons, with stronger evidence in DJF and
MAM. A seasonal spatial risk model is developed to predict the likelihood of SHPEs. Quantifying the
characteristics of SHPEs and modeling their footprints can improve the projections of flood risk and
understanding of damages to interconnected infrastructure systems.

Plain Language Summary We present a new approach to quantify extreme regional
precipitation considering the spatial structure of extreme events. Defined as simultaneous heavy
precipitation events (SHPEs), they measure the central location, spatial extent, and the orientation of
widespread heavy rains on the land. These characteristics are derived for four seasons over the entire
20th and early 21st centuries (115 years). We interpret the features of SHPEs over the Pacific Coast,
Midwest, and the Northeastern United States using a combination of atmospheric circulation and moisture
transport features. A seasonal spatial risk model is also developed to identify the probability of any region
experiencing SHPEs. The framework and findings presented in this study can help in developing improved
flood risk management methods by public/private planners and agencies. The database can be used by the
Earth system scientists working on extreme events to explore new avenues of research.

1. Introduction
1.1. Motivation

Simultaneous heavy precipitation over a region creates rapid inundation and significant risk of flooding.
It imposes a threat to the socioeconomic conditions and environment by causing severe damage to inter-
connected infrastructure systems and suspension of services over extended territories. The 1993 summer
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flooding known as the “Great USA Flood of 1993” along the Mississippi watershed and all over the U.S.
Midwest is one such example. According to Mo et al. (1995), a combination of geographic features and
mesoscale processes has caused this “Great USA Flood of 1993.” They showed that the orientation of the
Rocky Mountains which kept a leeward trough over their eastside, strong westerly eddies which caused
an anomalous upper-level zonal wind flow, and an active low-level jet (LLJ) which transported tropical
moisture to the Great Plains were the critical factors in causing widespread extreme rainfall. There were
uniquely repetitive and large aerial extent heavy rainstorms from May to August 1993 that bombarded the
central United States and Upper Midwest. Ultimately, such widespread extreme rain combined with preced-
ing wet soil conditions caused significant flooding across North Dakota, South Dakota, Nebraska, Kansas,
Minnesota, Iowa, Missouri, Wisconsin, and Illinois with $15 billion (U.S. dollars) in damages. The system of
railroad transportation in the Midwest was halted, thousands of levees along the Missouri and Mississippi
Rivers failed, and more than 60,000 km2 of farmland and many water treatment plants were inundated,
including loss of life of 50 people (Larson, 1997).

The “Great USA Flood of 1993” is not an isolated event. Such widespread precipitation induced extreme
events continue to occur in the United States. For instance, according to the billion-dollar weather and cli-
mate disasters catalog released by the NOAA/National Centers for Environmental Information (NCEI) for
the Year 2018, there were 12 storms that occurred across the United States including eight severe storms,
two tropical cyclones named Hurricane Florence and Hurricane Michael, respectively, and two winter
storms. Together, they caused $64 billion (U.S. dollars) economic damages, and they amount to 70% of total
losses associated with all of the billion-dollar disasters that occurred throughout the United States in 2018
(NOAA/NCEI, 2019). Identifying the ground footprint of extreme precipitation events and modeling their
spatial risk using large-scale atmospheric processes would be of immense value for determining the proba-
bility of a specific region -where and when- undergoing a high risk of inundation and sudden deluge. It has
invaluable beneficial effects in terms of better management of the infrastructure systems and reducing the
risk to the society.

1.2. Related Studies

We now briefly underline the recent advances that are in close connection to understanding the spatial
extent of precipitation extremes. Excepting the work of Touma et al. (2018), that quantified the length
scales of extreme precipitation events (>90th percentile) within a 500 km radial neighborhood across
the United States during 1965–2014, and Kunkel and Champion (2019) that studied the top 100 largest
area-averaged precipitation events in the United States during 1949–2018, current understanding of the spa-
tial manifestation of extreme precipitation events at the land surface level is limited to regional exploratory
analyses, specific seasons/events, or using restricted records of data (e.g., Mason et al., 1999; Zhang
et al., 2001; Voskresenskaya & Vyshkvarkova, 2016, and recent works by Berghuijs et al., 2019, & Kunkel
et al., 2020, respectively, on trend detection of synchronous flooding and average return intervals of extreme
precipitations). AghaKouchak et al. (2011) compared the connectivity of rainfall fields derived from satel-
lite data with a reference radar pattern for multiple satellite images during Hurricane Rita near the U.S.
Gulf Coast that occurred in September 2005. Zepeda-Arce et al. (2000) studied the structure of the observed
storms in Oklahoma and developed a predictive scheme based on convective available potential energy. A
more detailed description of their work can be found in Foufoula-Georgiou and Vuruputur (2001), where
they ask an important question on whether rainfall spatiotemporal patterns exhibit organization and if so,
would they be related to the physics of the atmosphere. An automated rainfall classification framework
using a combination of gamma distribution and cluster analysis was developed by Baldwin et al. (2005)
(Baldwin Object-Oriented Identification Algorithm or BOOIA) to model morphological properties of 148
rainfall events in the United States using an hourly precipitation data set. Later, Hitchens et al. (2012)
used the BOOIA for the characterization of extreme precipitation and identifying their causative mesoscale
convective systems (MCSs) over the Midwestern United States between 1996 and 2010. Similarly, Chang
et al. (2016) proposed a statistical simulation algorithm to assess possible changes that might be seen in
intensity, size, and duration of future precipitation patterns, conditional on warmer temperatures across the
United States. Further studies that examine MCS for thunderstorms can be seen in works performed by
Johns (1993), Bentley and Mote (1998), Trapp et al. (2005), and Lu et al. (2015). The duration and spatial
extent of global extreme precipitation was investigated by Dwyer and O'Gorman (2017) using global climate
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model simulations over the midlatitudes. They noticed a decreased duration over the 21st century projec-
tion. Recently, the areal extent of extreme rainfall was empirically identified to follow power laws, hence
explaining the underlying self-organization and scaling behavior (Devineni et al., 2015).

In Europe, the homogeneous patterns of precipitation were analyzed by Tabony (1981) where they indicated
that there is a gradient in rainfall from north to south and over the United Kingdom, Wales, and Ireland
together with common phase and amplitude in the southwestern and central England and over Wales. They
also highlighted that a combination of regional factors and large-scale atmospheric processes would define
such precipitation patterns at different spatial scales. Similarly, in the Himalayan region, Anders et al. (2006)
explained that there is a notable east-west tending and ridge-valley spatial gradient of precipitation patterns,
which are strongly governed by the topographical differences. Kansakar et al. (2004) conducted a detailed
study of spatial properties for different precipitation regimes across Nepal. They elaborated on the role of
high-mountainous areas in causing the orographic lifting and influencing the rate of precipitation in the
windward/leeward sides. In Australia, Wasko et al. (2016) showed that storm patterns will be less uniform at
higher temperatures, according to the scaling of the extreme rainfall with warmer temperature at or above
the Clausius-Clapeyron rate. A few other related regional studies can be found in Esteban-Parra et al. (1998),
Cavazos (1999), Peñarrocha et al. (2002).

There is a large body of literature which examines the relationship between large-scale atmospheric cir-
culations and regional precipitation patterns (e.g., Liu et al., 2020, and references therein). Wang and
Chen (2009) showed that the Great Plains low-level jet (GPLLJ) can be attributed to late-spring extreme rain-
fall events over the central United States. The incoming northward tropical moist air masses from the Gulf
of Mexico can further enhance the occurrence of such extreme rainfall events with devastating floods in the
late spring and the summer seasons (Hitchens et al., 2012; Lu & Hao, 2017; Najibi et al., 2019). In summer,
the frequency and distributions of rainstorms are associated with the midtropospheric perturbations caused
mostly by the northwest flow severe weather outbreaks (Johns, 1982; Wang et al., 2011). Smith et al. (2013)
demonstrated that the frequency of severe thunderstorm gust features a primary corridor over the South-
ern and Central Plains, while around 50% of the wind gusts between 2003 and 2009 are distributed from
immediate leeward side of the Rockies into the Intermountain West of the United States. Smith et al. (2012)
provided a large database of thunderstorms for the United States (2003–2011) and discussed the possible
causes of different spatial patterns; for example, the right-moving supercell events mostly occurring in May
and September are caused by the tropical cyclones. Recently, Kunkel et al. (2019) and Mondal et al. (2020)
studied the relationships between precipitable water and annual precipitation maxima, and the properties
of summer extreme precipitation events, respectively. Also, Jiang et al. (2020) used daily precipitation during
August–October (1,140 stations and 6,164 days) to explore the generic distribution of dominant precipitation
modes and their relationships with El Niño–Southern Oscillation (ENSO). A majority of these studies are
limited to regional/seasonal scales and/or an event-based investigation of the spatial fields with explanatory
analysis of their attributable climate and atmospheric circulation features.

This extensive survey has shown us that there is a high demand for a systematic study to quantify the spa-
tial manifestation of simultaneous extreme precipitation across the conterminous United States, determine
their area scaling factors and atmospheric patterns, and statistically model them for future predictions and
portfolio risk management strategies. Hence, in this paper, we introduce simultaneous heavy precipitation
event (SHPE) as a new form of measuring the spatial structure of heavy precipitation events. We also inves-
tigate the potential causes and drivers that led to such spatial organization throughout the United States.
Furthermore, we present the quantification of the areal extents of SHPEs using power laws and a relatively
simple logistic modeling scheme to predict the risk of SHPEs spatially over the United States.

The rest of the paper is structured as follows: Section 2 describes the data and observations that were
employed in this analysis. The methodology and the geometric indicators are presented in section 3. In
section 4, we explain the spatial characteristics of SHPEs in the 20th and early 21st centuries (1900–2014)
across the United States together with their areal extent scaling relationships, seasonality, associated atmo-
spheric dynamics and climatic processes, and predictive model. Final conclusions and remarks are presented
in section 5.
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2. Materials and Data Preparation
2.1. Precipitation: GHCN-Daily Observations

Long-term records of daily ground-based precipitation measurements over the contiguous United States
between 1900 and 2014 (115 years) are obtained from the Global Historical Climatology Network-Daily
(GHCN-D) (Menne et al., 2012; NOAA/NCDC, 2017). The GHCN-D data can be accessed from the NOAA's
National Centers for Environmental Information (NCEI). We selected 1,244 stations with nearly full records
across the conterminous United States using a two-stage filtering process. In the first stage, for all the avail-
able stations, we flagged any year with more than 72 days of missing data (20%) as “missing years.” Then,
we selected those stations that have at least 92 years of complete data (i.e., less than 20% missing years). We
used this 1,244-station data in a recent study on identifying trends in the frequency of extreme rainfall days
(Armal et al., 2018). There are 42,003 days in the analyzed data set.

The main reason for using ground-based precipitation observations is to overcome the shortcomings
attributed to gridded precipitation products at the national scale, especially for extreme precipitation
analysis. For instance, several of the gridded products appear to underestimate extreme precipitation
(e.g., Risser et al. (2019),Timmermans et al. (2019), Daly et al. (2017) and references therein). This under-
estimation is even more prominent at higher altitudes and while capturing local extremes (e.g., Gervais
et al., 2014). We intended to avoid such systematic data-related issues. Moreover, gridded precipitation
products are also substantially shorter in record length compared to ground-based observations.

2.2. Atmospheric Circulation Based on Reanalysis

We used the European Centre for Medium-Range Weather Forecasts (ECMWF) 20th Century Reanalysis
(ERA-20C; Hersbach et al., 2015) from 1900 to 1978 and the ERA-Interim (Dee et al., 2011) from 1979 to 2014.
For both reanalyses, we downloaded data that ECMWF had projected onto a 1.5◦ horizontal resolution. The
twentieth century reanalysis is available through 2014. However, ERA-Interim uses a more comprehensive
data assimilation procedure. ERA-20C and ERA-Interim are compiled into a continuous data set, and it is
utilized to create composites for 500-hPa geopotential heights (Z500) and precipitable water vapor (PWV).
A 115-year daily climatology based on 1900 to 2014 is created for geopotential heights, and used for
calculating the anomaly field of each variable.

3. Methods and Setup
In Figure 1, we present the workflow diagram for the systematic approach that was carried out in this study.
We introduced the first module, which is related to the preparation of data, in section 2 (Materials and
Data Preparation section). The remaining sections that are about the spatial representation of precipitation
extremes will now be explained in detail.

3.1. Defining SHPEs

We start by presenting two examples of the spatial manifestation of widespread rainfall that occurred on 8
May 1995, and 13 September 1961 (Figure 2a). The algorithm described below shows how to identify SHPEs.
An illustration is provided in Figure 2b to contextualize each step.

1. The 99th percentile (hereafter, R99) of the daily nonzero precipitation intensity (R, millimeters) —across
all 115 years of daily records— is computed for each of the 1,244 GHCN-D stations.

2. For each day starting from 1 January 1900 to 31 December 2014, we count the number of rainfall stations
that have a measured precipitation intensity greater than 0 (i.e., R> 0) and label them as c1 (light-blue
colored stations in Figure 2b). Next, we examine if any stations listed in c1 have a precipitation intensity
greater than R99 (i.e., R>R99), and define them as c2 (dark-blue colored stations in Figure 2b). c2 is the
total number of stations (if any) that recorded an extreme precipitation intensity (>99th percentile) on
that day.

3. Then, we calculate the rate of extremes (RoE) as RoE = c2/c1. RoE for a day indicates what fraction of the
rain gages recording nonzero precipitation are experiencing an extreme rainfall intensity (R>R99). We
then calculate the 99th percentile of the distribution of RoE, RoE99 (Figure 2c). RoE99 indicates a thresh-
old RoE where a substantial number of rain gages simultaneously observed extreme precipitation. In our
case, RoE99 = 0.15; 15% of the rain gages that measured nonzero rainfall are simultaneously experienc-
ing extreme rainfall. This threshold helps us identify only those notable stations that are experiencing
simultaneous heavy precipitation for any specific day.
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Figure 1. Workflow diagram presenting the approach for understanding and modeling the spatial characteristics of
simultaneous heavy precipitation events (SHPEs) across the conterminous United States.

4. Ultimately, we admit those days (i.e., events containing a certain number of stations) that satisfy the
condition RoE >RoE99 into the SHPEs database for the 1900–2014 period. An SHPE indicates a spatial
structure of intense precipitation on the land that has been recorded by a significant number of stations on
a given day. To account for the uncertainty in identifying SHPEs due to the space-time disparity in the
measurement of precipitation with the movement of the storm, we also include any stations with extreme
precipitation intensities 1 day before and 1 day after the SHPE date. For example, an event that lasted for
4 h from 10 p.m. of the current day to 2 a.m. of the next day can be recorded in both the days if it is over
one station, or can be recorded in multiple stations over the 2 days. We consider this phenomenon as one
event. In other words, we perform a 3-day smoothing for each SHPE to adjust our database to account
for extremes of the previous day and the next day. Note that we are using daily precipitation and not
individual storms. In this regard, an intense storm happening over a short duration, if occurred during
the daily transition (e.g., between 10 p.m. and 2 a.m.), may not show up in SHPEs due to aggregation by
the days.
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Figure 2. (a) Spatial distribution of two widespread precipitation events that occurred on 8 May 1995 (top) and 13
September 1961 (bottom), and (b) geometric illustration of the extent of an SHPE on the ground. The stretches are
shown as l1 and l2 axes, and the orientation angle is shown as θ. Note that depending on the manifestation of the SHPE
on the ground, θ> 0 indicates SW-NE direction (as shown in the illustration) and θ< 0 indicates SE-NW direction. The
dark filled circle (μ[lon, lat] ) indicates the centroid, and λ1 and λ2 refer to the eigenvalues of the SHPE. (c) The
empirical cumulative distribution function (CDF) of the rate of extremes (RoE) is indicated. The 99th percentile of
events that have RoE >RoE99 (i.e., RoE99 = 0.15) are selected in this study. The two SHPEs shown here in panel (a)
contain 207 and 271 stations, respectively, with l1, l2, θ of 1,250 km, 903 km, -50.42◦ and 1,162 km, 738 km, 46.29◦.
Their centroids are located at 97◦W, 39◦N (near Junction City in Geary county, KS) and 94◦W, 38◦N (Ballard in Bates
county, MO), approximately. The SHPE in May 1995 attributes to May 1995 Louisiana flood, impacting the states of
Kansas, Missouri, Nebraska, Oklahoma, Mississippi, and Louisiana with total losses tallying $3 billion (U.S. dollars).
The SHPE in September 1961 is related to Hurricane Carla (1961) causing more than $300 million damage to the states
in the central United States.

By applying the above described detection algorithm, we identified 419 SHPEs over the conterminous United
States between 1 January 1900 and 31 December 2014. Since there is a clear seasonality in precipitation
across the United States, we classify the 419 SHPEs into four formal seasons listed as December-January-
February (DJF), March-April-May (MAM), June-July-August (JJA), and September-October-November
(SON). This classification will also help explore the spatial characteristics of SHPEs and their synoptic
circulation patterns. There are 54, 58, 103, and 204 SHPEs, respectively, in DJF, MAM, JJA, and SON seasons.
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3.2. Centroids, Principal Axes, Areal Extents, and Orientations of SHPEs

We quantify SHPEs using their geometric properties; centroids, the two principal axes of spatial variance
along with their orientation, and the areal extents. In Figure 2b, we show a black filled circle as the cen-
troid of the SHPE, and two vectors, l1 and l2 as the first (major) and second (minor) axes of a typical SHPE
with elliptical manifestation. In addition, we also determined the orientation of the principal axis; the angle
between the major axis (l1) and the Earth's geographic north (N, 0◦ azimuth angle). The orientation angle
is referred to as 𝜃 hereafter (see Figure 2b).

Each SHPE is made up of a vector of coordinates (the longitude and latitude, [lon, lat]), that essentially
constitute the spatial manifestation of extreme rainfall. After excluding the outliers, the centroid for a finite
set of the coordinate vector space is computed using the discrete approximation of the joint first moment.

For each season,

Centroid𝑗

shpe =

(
1
n

n∑
i=1

lon𝑗

i ,
1
n

n∑
i=1

lat𝑗i

)
(1)

where j indicates the number of identified SHPEs in that season (e.g., 𝑗 = 1 to 54 for DJF) and n is the total
number of stations for that SHPE. Centroid is the centroid matrix with a size of two ([lon, lat]) by the total
number of SHPEs in each season.

While our choice of a high RoE threshold (RoE99) ensured that the SHPEs were spatially homogeneous,
we found a few events having disparate manifestation with pockets of outlying stations predominantly in
the longitudinal direction. This pattern is expected since, on any given day, one could find stations that
are far apart, recording extreme rainfall simultaneously. For example, one could find a situation where an
Atlantic hurricane causes an SHPE, while at the same time, stations far away from this hurricane track could
experience extremes due to deep convection. Hence, we opted to identify and exclude these outlier stations.

The procedure for identifying the outliers for SHPEs is described below:

1. We first compute the median ( ̃lon) and the interquartile range (IQR) of the longitudes for each of the
SHPE in a given season. While median indicates a robust central location in the longitudinal direction,
IQR (computed as the difference between the 75th and 25th percentiles of the distribution of longitudes),
provides a robust distance measure for the SHPE range over the longitudinal direction.

2. We then compute the absolute deviation of each station from l̃on (ADi = |loni − l̃on|) to measure the
longitudinal distance for each station from its longitudinal center. Large (small) ADi indicates a station
that is far away from (close to) the central location. We compare ADi (distance) for each station with
a cutoff distance, which is the 95th percentile of the IQRs across all events in the season. Any station
with ADi > IQR95 is considered as an outlier and excluded from the coordinate vector. As mentioned
before, we had very few events that needed this filtering, but the process was essential to ensure that the
Centroidshpe is resistant to outliers.

To get the major and minor principal axes, and the orientation of the SHPE (indicated as l1, l2, and 𝜃 in
Figure 2b), we applied principal component analysis (PCA) (i.e., empirical orthogonal function analysis)
(Wold et al., 1987) on the coordinate vector space. We implemented PCA in two dimensions to derive the
two eigenvalues (𝜆1 and 𝜆2) and the eigenvectors (E). PCA will map the SHPEs coordinate vector space onto
a new rotated space so that the major principal axis (l1) will be in the direction of the maximum variance
while the minor principal axis (l2) will be perpendicular to this axis. The two eigenvectors, which determine
the magnitude of the rotation, are used to derive the orientation angle (𝜃). Essentially, we decompose the
covariance matrix of the coordinate vector space into an orthogonal matrix of eigenvectors and a diagonal
matrix with eigenvalues as its nonzero diagonal elements.[

𝜎2
lon 𝜎lon𝜎lat

𝜎lon𝜎lat 𝜎2
lat

]
= [E]

[
𝜆1 0
0 𝜆2

]
[E]T (2)

We assume l1 as 𝜇± 𝜆1 and l2 as 𝜇± 𝜆2 to get the lengths of the axes in both directions from the centroid.
Each SHPE is hence transformed into an ellipse with a centroid (Centroidshpe = [lon, lat]) and two axes of
l1 and l2.
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The ratio of l2/l1 is also computed for each SHPE to see if the geometric structure is circular or elliptical.
Larger l2/l1 ratios would refer to circular SHPEs, whereas, if l1 ≫ l2, the areal extent of SHPEs will be placed
mostly along the l1 axis and the structure of the SHPE will be elliptical. The areal extent for each SHPE is also
calculated based on area= 𝜋l1l2, where l1 = 2𝜆1 and l2 = 2𝜆2 as shown in Figure 2b. We are assuming that
l1 = 𝜇±𝜆1 and l2 = 𝜇±𝜆2 here, that is, the high density part that covers approximately 66% of the mass. One
can also compute the area for the full SHPE ellipse where l1 and l2 can be assumed as 𝜇± 2𝜆1 and 𝜇± 2𝜆2.

Furthermore, we computed SHPE's orientation, which indicates its angle with respect to the geographical
north direction (azimuth). This angle identifies the angular distance between SHPE's major axis (i.e., l1) and
N (N is the 0◦ azimuth degree for the Earth's geographic North Pole) (see parameter 𝜃 in Figure 2b). The
angle 𝜃 is calculated using eigenvectors, which range from -90◦ to +90◦ (where 0◦ is set toward the Earth N
direction; 0◦ azimuth) for the negative (SE-NW) and positive (SW-NE) orientations of SHPEs, respectively.

4. Results and Discussions
4.1. Temporal Characteristics of SHPEs Across the United States (1900–2014)

Based on the detection algorithm described in section 3, we identified 419 SHPEs out of the 42,003 days
between 1 January 1900 and 31 December 2014 (approximately 1% of the days). Figure 3 presents the
temporal distribution of these 419 SHPEs across the United States at the daily, seasonal, and annual
time scales.

For each event, we recorded the day of year (DOY), a sequence number indicating 1 if the SHPE occurred
on 1 January, and 365 or 366 if the SHPE occurred on 31 December (a leap year with 366 days). Figure 3a
shows this intra-annual distribution as a scatterplot in the polar coordinate system. SHPEs are occurring
throughout the year with a slightly increased frequency in the second half of the year. SHPEs in February
and March have the lowest frequency (in total, 10 and 7 SHPEs occurred in February and March during
1900–2014).

We also computed the number of SHPEs occurring each year (1 January to 31 December) and each sea-
son of the year (DJF, MAM, JJA, and SON) over the entire time period (1900–2014). The annual frequency
time series plot along with a LOWESS (Locally Weighted Scatterplot Smoothing Loader, 2006) line is shown
in Figure 3b. While the mean annual sum of SHPEs is between 3 and 4, we observed a convex behav-
ior with more SHPEs in the early 20th and early 21st centuries. There were 196, 150, and 73 SHPEs that
occurred in the periods of 1900–1950, 1951–2000, and 2001–2014, respectively, in the United States. A sim-
ple Mann-Kendall nonparametric trend test (Mann, 1945) on the annual frequency reveals no significant
trend (p value = 0.75).

The time series of the seasonal counts are shown in the inset of Figure 3b. It has to be noted that the seasonal
counts of DJF include SHPEs from December of the previous year. For example, DJF for the Year 2000
contains SHPEs that occurred in December 1999 and in January and February of 2000. As in the case of the
annual frequency, we failed to detect any seasonal trends over the years. The SHPEs during the SON season
have a higher frequency in particular when compared to the other three seasons.

4.2. Spatial Characteristics of SHPEs Across the United States (1900–2014)
4.2.1. SHPEs in December, January, and February
Figure 4 presents the spatial distribution of the geometric attributes of SHPEs that occurred during the DJF
season (i.e., any SHPEs dated in December, January, or February; DOY between 335 and 59 or 336 and 60
for leap years) from 1900 to 2014 across the conterminous United States. The centroid and two axes for each
SHPE (i.e., major and minor axes of the ellipse) are sketched as a filled black circle and red thick and blue
thin lines (l1 and l2), respectively.

There are 54 SHPEs in the DJF season of which 37 (∼70%) occurred over the Cascade Range and the
U.S. Pacific coast region, that is, mostly in the states of Washington, Oregon, Nevada, and over Northern
California.The average length of the l1 and l2 axes are approximately 1,100 and 550 km. SHPEs with short
l1 can be seen across the U.S. Pacific coast region. The ratio of l2 to l1 is mostly greater than 0.5 for SHPEs
in the Pacific Northwest, indicating a more circular spatial manifestation (see Figure 4b). However, the
17 SHPEs that did not occur in the Pacific coast region —but occurred over Ohio Valley and west north
central— have more areal aggregation along the l1 axis, and thus the ratio of l2 to l1 is lower than 0.5. The
spatial manifestation of these 17 SHPEs is mostly elliptical. Additionally, Figure 4c shows the calculated area
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Figure 3. (a) Time of occurrence of SHPEs within the years between 1 January 1900 and 31 December 2014 is
presented as a scatterplot in the polar coordinate system. The date 1 January is set as DOY (day of year) equal to 1, and
the annual cycle ends on 31 December in each year. (b) Temporal distribution of the annual counts of SHPEs
(419 events between 1900 and 2014) with the LOWESS smoother plot. The seasonal counts of SHPEs for four seasons,
December-January-February (DJF), March-April-May (MAM), June-July-August (JJA), and
September-October-November (SON) is shown in the inset of this panel.

for each SHPE (approximated as the area of the ellipse) in units of square kilometers. The corresponding
areas cover an extent equal to 2,100,000 km2 on average where larger areas are dominant for those SHPEs
manifested across the states of Missouri, Oregon, Nevada, and over Northern California. Also, most of the
SHPEs in the DJF season have a SW-NE orientation as the l1 axis points to the SW-NE direction toward the
North Pole (i.e., positive 𝜃 angles).
4.2.2. SHPEs in March, April, and May
We identified 58 SHPEs in the MAM season during 1900–2014 across the conterminous United States. The
spatial manifestation of these SHPEs including their two axes (l1 and l2) with orientation and circular or
elliptical manifestation (ratio of l2 to l1), as well as their full quasi-elliptical areas are shown in Figure 5.

Figure 5a shows that the central and south central United States is the footprint for most SHPEs that occurred
during the MAM season. In particular, the states of Kansas, Oklahoma, and Nebraska have more SHPEs
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Figure 4. (a) Spatial distribution of SHPEs in the DJF season shown using their centroids and stretches (l1 and l2 axes)
(1900–2014), (b) distribution of l2/l1 ratio to indicate the elliptical and circular nature of SHPEs, and (c) areal extents
of SHPEs (readers are cautioned against the projection artifact that might be influencing the orthogonality of
l1 and l2 axes).

with a circular structure and have larger areas (2,000,000 to 2,500,000 km2). The States of Missouri, Iowa,
and Illinois have SHPEs with mostly elliptical structures with smaller areas compared to the circular SHPEs
(see Figure 5b). There are 8 SHPEs (out of the 58) that occurred along the U.S. northeast belt that mostly
have smaller areas and SW-NE azimuth orientation.

60% (40%) of the 58 SHPEs have a SE-NW (SW-NE) orientation. The circular SHPEs (dominant in the central
United States) mostly have a SE-NW orientation (negative 𝜃) while the elliptical SHPEs (dominant in the
eastern United States) have a SW-NE orientation (positive 𝜃) during the MAM season. There is evidence
that most of the SHPEs in this season were responsible for major floodings in the central and south central
United States in the late spring and early summer. For example, a continuous 40-hr heavy rain episode led
to the “May 1995 Louisiana Flood” (Ricks et al., 1997; Vatti et al., 2003). We illustrated its possible SHPE in
Figure 2a (top) that occurred on 8 May 1995 over the central United States. This SHPE features a SE-NW
direction (𝜃 = −50.42◦) and l1, l2, and areal footprint equal to 1250, 903 km and 3,500,000 km2. It caused a
devastating flood across multiple rivers in the states of Kansas, Arkansas, Illinois, Missouri, Mississippi, and
Louisiana in May and early June 1995, in addition to $3.1 billion (U.S. dollars) in damage. The Missouri and
Mississippi Rivers crested at 11.19 and 14.23 m, which was 3.57 and 4.48 m above the flood stage, respectively
(Turnipseed et al., 1995).
4.2.3. SHPEs in June, July, and August
For the June, July, and August (JJA) season, we detected 103 SHPEs from 1900–2014. Most SHPEs in the
JJA season are spread over the U.S. Midwest and over the East Coast and northeast regions (Figure 6). South

NAJIBI ET AL. 10 of 33



Journal of Geophysical Research: Atmospheres 10.1029/2020JD033036

Figure 5. (a) Spatial distribution of SHPEs in the MAM season shown using their centroids and stretches (l1 and l2
axes) (1900–2014), (b) distribution of l2/l1 ratio to indicate the elliptical and circular nature of SHPEs, and (c) areal
extents of SHPEs (readers are cautioned against the projection artifact that might be influencing the orthogonality of
l1 and l2 axes).

Dakota, Nebraska, Iowa, Missouri, Kansas, Kentucky, and Illinois are the primary States in the Midwest that
were impacted by these SHPEs. While the majority of SHPEs that occurred over the Midwest and northeast
indicate an elliptical spatial structure, those SHPEs that occurred across the states of Nebraska and Kansas
are mostly circular in shape (see Figure 6b).

SHPEs in this season have areal extents averaging around 2,300,000 km2. In particular, Midwest-related
SHPEs have an area that mostly ranges from 2,500,000 to 4,400,000 km2 (see Figure 6c). Moreover, the ori-
entation of SHPEs in the JJA season is aligned toward the SE-NW direction (negative 𝜃). See, for instance,
the events in the Midwest over the Missouri River Basin (and leeward of the Rocky Mountains).

Referring back to the “Great USA Flood of 1993”, our results showed that an SHPE containing over 120
rainfall gauges occurred on 8 June 1993. This elliptical SE-NW SHPE (ratio = 0.36, 𝜃 = −80◦) manifested
over the state of Iowa (centered at 42.5◦N and 92.0◦W) with an average intensity of 50 mm (maximum of
136 mm), and l1 and l2 of 1,600 and 580 km, respectively.

We also noticed two similarly strong SHPEs that occurred back-to-back on 30 and 31 August 2005, with an
average rain intensity of 80 mm (maximum of 230 mm) from over 130 rain gauges. They were centered over
the state of Kentucky along the SW-NE direction with areal extents almost equal to 3,000,000 km2, crossing
the states of Mississippi, Tennessee, Kentucky, Indiana and Ohio. One can associate these two SHPEs as
the full footprint of Hurricane Katrina (2005) after the landfall, a Category 5 hurricane that occurred in late
August 2005, causing $125 billion (U.S. dollars) in damage.
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Figure 6. (a) Spatial distribution of SHPEs in the JJA season shown using their centroids and stretches (l1 and l2 axes)
(1900–2014), (b) distribution of l2/l1 ratio to indicate the elliptical and circular nature of SHPEs, and (c) areal extents
of SHPEs (readers are cautioned against the projection artifact that might be influencing the orthogonality of
l1 and l2 axes).

4.2.4. SHPEs in September, October, and November
There are 204 SHPEs in this season during 1900–2014 across the conterminous United States. We recognize
three spatial clusters that manifested regionally over the United States, including the U.S. West Coast, the
Midwest, and the northeast/Mid-Atlantic regions (Figure 7). There is a high incidence of SHPEs across the
northeast/Mid-Atlantic region in particular over the states of New York, Pennsylvania, Maryland, Virginia,
West Virginia, North Carolina, South Carolina, as well as the States of Georgia and Kentucky. In addition,
the States of Iowa, Nebraska, Missouri, Kansas, and Illinois are mostly the target regions of Midwest-related
SHPEs (Figure 7a). There are a few SHPEs that manifested over the states of Oregon and Washington
(the cluster in the West Coast). Although the orientation of SHPEs in the SON season mostly follow a SW-NE
direction (positive 𝜃), we can see a mixture of SW-NE and SE-NW directions for SHPEs in the U.S. Midwest.

As before, we calculated the ratio of l2 to l1 for SHPEs in the SON season and presented them in Figure 7b.
It is apparent that the majority of the SHPEs that occurred across the Midwest region have mostly cir-
cular structures, while SHPEs in the northeast/Mid-Atlantic region indicate elliptical spatial structures.
Their calculated areas are presented in Figure 7c. The average area for SHPEs in this season is approxi-
mately 1,900,000 km2. Most of the SHPEs with larger areal extents were manifested in the Midwest region.
Hurricane Carla (1961) (see Figure 2a, bottom) and Hurricane Ike (2008) (which can be linked to two
consecutive SHPEs on 13 and 14 September 2008) are just a few examples of hurricane induced SHPEs in this
region. SHPEs in the U.S. West Coast spatial cluster have significantly smaller areal extents with a SW-NE
orientation.
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Figure 7. (a) Spatial distribution of SHPEs in the SON season shown using their centroids and stretches (l1 and l2 axes)
(1900–2014), (b) distribution of l2/l1 ratio to indicate the elliptical and circular nature of SHPEs, and (c) areal extents of
SHPEs (readers are cautioned against the projection artifact that might be influencing the orthogonality of
l1 and l2 axes).

4.2.5. Summary of the Spatial Characteristics of Seasonal SHPEs
Figure 8 presents the distribution of the l1 and l2 axes (in kilommeters) as well as the orientation angles 𝜃
(in degree), in each season of DJF, MAM, JJA, and SON across the conterminous United States in 1900–2014.
l1 is the major principal axis, l2 is the minor principal axis and 𝜃 is the orientation, derived from the
eigenvalues and the eigenvectors of the coordinate vector.

In Figure 8a, the boxplots present the overall distribution of l1 and l2 in the DJF, MAM, JJA, and SON sea-
sons. For all the seasons, l1 and l2 approximately vary between 400 and 2,000 km and from 100 to 1,100 km,
respectively. l1, the stretches (linear extents) of SHPEs over the major principal axis in the JJA season seem
to be moderately longer than the stretches in the DJF, MAM, and SON seasons. Notice, for instance, that the
median of l1 in the JJA season is 1,250 km, compared to the other medians of 950, 1,150, and 1,050 km. The
distributions of l2, that is, the stretches along the minor axis (which is orthogonal to the major axis) seem
to be approximately identical for the seasons of DJF and JJA (with medians of 572 and 574 km). Similarly,
they seem to be identical for the seasons of MAM and SON (with medians of 493 and 509 km).

In Figure 8b, we present the distribution of 𝜃, the orientation of SHPEs, for each season, as histograms.
Attached to these histograms, we also show the data as horizontal boxplots. 𝜃 is mostly positive for SHPEs in
the DJF and SON seasons indicating that the orientation of SHPEs in the DJF and SON seasons are primarily
in the SW-NE directions. In the MAM and JJA seasons, there are SHPEs with positive and negative angles,
in particular with slightly more frequent SHPEs in the SE-NW direction (negative angles) (see the median
of distribution from the horizontal boxplots in Figure 8b for instance).
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Figure 8. (a) Boxplots presenting the distribution of l1 and l2 axes of SHPEs, and (b) histograms indicating the number
of SHPEs orientation angles (θ referenced to the geographical north) in each category (15◦ bin width). Horizontal
boxplots in (b) show the overall distribution of θ in each of the DJF, MAM, JJA, and SON seasons across the United
States (1900–2014). Positive and negative angles refer to the SW-NE and SE-NW orientations, respectively.

In addition to Figure 8, we provide Table 1 that summarizes the spatial characteristics of SHPEs in the four
seasons during 1900–2014. To better comprehend the areal extents of SHPEs, we have also calculated its
fraction with respect to the total area of the state of California (CA) which is 423,970 km2 (163,696 mi2)
(US/Census/Bureau, 2012). For instance, if one considers the high-density area of SHPEs (i.e., inner ellipse
in Figure 2b), the average areal extent of SHPEs in the DJF season is approximately 4.96 times the area of
CA. It is 5.43 times the area of CA for the JJA season.

4.3. Identifying the Atmospheric Circulation Patterns for SHPEs

In addition to understanding the spatial manifestation of SHPEs and their geometric properties across the
United States, we also examine the synoptic circulation for events that occurred in the same region and
season. This analysis is meant to provide context for atmospheric conditions during the SHPEs. It is not
meant to be an exhaustive analysis of the dynamics — such an analysis is outside of the main focus of
this work. To provide context for the synoptic conditions, we present a compositing analysis that shows
both the upper-level circulation and column water vapor. For our composites, we average together the daily
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Table 1
Summary of the Spatial Properties of SHPEs That Occurred Across the United States in the DJF, MAM, JJA, and SON
Seasons During 1900–2014

Attributes (average ± std) DJF MAM JJA SON
Number of SHPEs 54 58 103 204
l1 (km) 1, 124± 456 1, 166± 339 1, 240± 302 1, 081± 344
l2 (km) 568± 199 511± 156 579± 178 540± 216
l2/l1 ratio (km/km) 0.5435± 0.2009 0.4637± 0.1763 0.4861± 0.1621 0.5153± 0.1784
area (km2) 2.104× 106 1.897× 106 2.303× 106 1.930× 106

area wrt CAa (l1 , l2) 4.962 4.474 5.431 4.615
aCalifornia has an approximate width, length, and area equal to 400 km, 1,240 km, and 423,970 km2.

fields for dates on which a chosen set of SHPEs are centered; the choice of which SHPEs are explained
below. The figures presented herein include the anomaly of the 500-hPa geopotential height field (Z500) and
the precipitable water vapor (PWV; the full field, not the anomaly). The Z500 anomaly is calculated with
respect to the daily climatology (see section 2.2 for details). We chose these two fields because: (i) the Z500
anomaly captures the large-scale tropospheric circulation that is the backbone for the storms that generate
the precipitation, and (ii) the full field for PWV displays moisture available. For PWV, we note that although
it is a column integrated term most of the water vapor that makes of the column integral is found near the
surface. As such, these composites provide an overview of the upper-level and near-surface conditions.

The first composite shown focuses on the 35 SHPEs during DJF in the Pacific Northwest region (see map of
the SHPEs' locations in Figure 9a). These events are located primarily along the Cascade mountain range as
well as the northern edge of the Sierras. The Z500 anomaly indicates that there is a trough to the northwest
and a ridge to the southeast (Figure 9b). At 500-hPa the winds are approximately geostrophic, meaning
they blow parallel to the isobars. Thus the anomalous upper-level wind is directed toward the SHPE impact
region, and the low and high geopotential height anomaly pattern enhances the strength of the southwest
to northeast flow. This upper-level synoptic pattern is indicative of extratropical cyclones that move into
the Pacific Northwest region from the Pacific Ocean. The PWV shows a filament of moisture that extends
from the subtropics (Figure 9b). The filament is directed along the same path as the anomalous upper-level
winds. This pattern is consistent with the archetypical atmospheric river (AR) circulation that delivers the
strongest precipitation events to the region (see more details in Gershunov et al., 2017; Guan et al., 2018;
Huang et al., 2020; Jeon et al., 2015; Ralph et al., 2019; Waliser & Guan, 2017). As a reminder the composite
include SHPEs that occur in the states of Washington and California and therefore the averaging used to
generate the composite smooths the sharper features found in individual events.

The second composite is for the 74 SHPEs during JJA in the midwestern United States (see map of the SHPEs'
locations in Figure 9a). This region is defined as all points east of 100◦W and west of 86◦W. 100◦W demarcates
the historical divide of the arid and wet regions of the United States, and 86◦W separates the Midwest storms
from the cluster seen throughout the Appalachian Mountains. This comprised watersheds that feed into the
Mississippi River. In this case, the Z500 anomalies show a high-low-high wave-like pattern (Figure 9c). The
pattern resembles a Rossby wave train, which has been attributed to other heavy precipitation events (Wang
et al., 2013; Weaver & Nigam, 2008). The low heights anomaly is centered to the west, that is, upstream, of
the precipitation events. The anomalous geostrophic circulation suggested by the Z500 anomalies includes
wind blowing from south to north over the Mississippi river region. In this same region, the PWV is larger
than the surrounding longitudes (Figure 9c), with the stronger values appearing to extend up from the Gulf
of Mexico.

The third composite is focused on 85 SHPEs along the U.S. East Coast (see map of the SHPEs' locations in
Figure 9a). These events occurred during SON and likely include tropical cyclones. However, the composite
analysis suggests that for at least some of the SHPEs there is a strong upper-level trough involved as well.
The Z500 anomalies show a pattern of high-low-high that is arranged in a V-shape with the low-heights
anomalies at the bottom of the V. The lowest Z500 anomalies sit in the southern portion of the region of the
SHPE locations and the highest Z500 anomalies are offshore north and east of the SHPE region (Figure 9d).
In between this dipole in height anomalies, large values of PWV extend northward, seemingly following the
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Figure 9. (a) Composite analysis: (a) Locations of the SHPEs used for composites. The right column shows composites
of Z500 anomalies (contours) and PWV (shading) for (b) Pacific Northwest region during DJF (34 events), (c) Midwest
during JJA (74 events), and (d) northeast/Mid-Atlantic during SON (85 events). Contour interval is 20 m in panel (b)
and 10 m in panels (c) and (d). Dashed contours indicate negative height anomalies, and gray contour is the
zero-anomaly line. Units for PWV are millimeters, and all three panels use the same color bar.

location of the Gulf Stream. The anomalous winds associated with the Z500 anomalies appear to be advecting
the moisture inland.

The compositing analysis presented in Figure 9 both adds new information and affirms existing results. To
our knowledge, no previous work has presented the composite circulation of precipitation extremes for these
specific regions and seasons using a data set that spans over 100 years. Additionally, for the Midwest, the
emergence of a zonal Rossby Wave-like pattern is a new result. However, given that the context of this paper
is mainly the presentation of a new (spatially extreme) precipitation data set, the most important aspect of
the compositing results are their affirmation of previous literature.

For the Pacific Northwest region in DJF (Figure 9a), the strong cyclonic anomaly northwest of the impact
region is consistent with Loikith et al. (2017). Their self-organizing map analysis highlighted a similar pat-
tern as the most likely to cause heavy precipitation. In our analysis and Loikith et al. (2017), the circulation
suggests a strong extratropical cyclone tracking over the Cascade Mountain range into Canada with a cold
front trailing to the south. This attribution of the extreme precipitation to the cyclones and fronts is con-
sistent with the tabular results from the map analysis of contiguous United States precipitation extremes
presented by Kunkel et al. (2012).

For the Midwest during JJA, Lavers and Villarini (2013) have shown that compositing SLP for all ARs leads
to a low-pressure anomaly centered in the Midwest with high pressure anomalies to the west and east
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(their Figure 5). In our analysis, a similar anomaly pattern emerges (Figure 9b), however the pattern is more
zonal than Lavers and Villarini (2013). This is likely due to the fact that our cases are not exclusively lim-
ited to ARs. A compositing analysis of flood events (Nakamura et al., 2013) shows a similar pathway for the
moisture fluxed northward into the Midwest region. Their work focused on events that exceed a 10-year
return level for flooding and highlights a persistent, high pressure system northeast of the flood region. Our
compositing analysis likely includes many more events that are weaker, and the Rossby Wave train in the
upper-levels is more prominent than any persistent high pressure system.

For the northeast United States during SON, the Z500 anomalies identify a clear upper-level trough.
These results agree with previous compositing work for the region which were based on tropical mois-
ture exports (Steinschneider & Lall, 2015), summertime precipitation extremes in the northeast United
States (Marquardt Collow et al., 2016), and precipitation extremes in farther north, in Newfoundland
(Milrad et al., 2010). More recently, Agel et al. (2019) sorted northeast precipitation extremes by synoptic
circulation — the patterns that created the strongest precipitation events look similar to those we find (e.g.,
their Clusters 2 and 6).

As an additional check, we compared the composites that use all dates with those using dates after 1 January
1979 (i.e., dates when ERA-Interim is available, since the ERA-Interim uses a more comprehensive data
assimilation procedure), and the results are qualitatively very similar (not shown). Overall, the composite
analysis provides a strong assurance that the algorithm used to identify SHPEs is properly capturing events
in which the atmosphere was organized in a manner that can lead to heavy precipitation. The presence of
an upstream trough and downstream ridge in the composites suggest that most of the events have strong
upper-level forcing, and the presence of a filament of high PWV in each composite confirms that there was
ample moisture available. For the Midwest and East Coast, there is a wave-like structure in the Z500 anoma-
lies. The Midwest anomalies are aligned zonally, while the east coast anomalies create a trough structure
with the low at the base of the trough. The Pacific Northwest stands out from the other two regions: It has
the deepest upstream Z500 anomaly (note the different contour intervals as compared to the other two) and
the smallest PWV amounts. The smaller PWV relates to the colder season and the lack of a warm ocean
water in the near vicinity for this composite region. However, the stronger upper-level anomalies somewhat
compensate for the weaker PWV amounts. That being said, one element for future work is the analysis of
the propagation of the atmospheric circulation types, since the duration of the precipitation events is also
critical for accumulation.

4.4. Quantifying the Spatial Manifestation of SHPEs
4.4.1. Frequency Distribution of the Areas of SHPEs
In this section, we attempt to quantify the frequency distribution of the areas of SHPEs using a power law dis-
tribution. Given our motive to eventually develop spatial flood risk models for civil infrastructure portfolio
analysis, understanding whether the frequency of the observed SHPE areas follows an underlying theoreti-
cal distribution is of interest. Hence, for each season, we explored whether the empirical data of SHPE areas
(as approximated by the ellipse) may be drawn from the power law distribution:

𝑓 (A) ∝ A−𝛼 for A > Amin (3)

where Amin is the threshold (lower bound) for the applicability of a power law and 𝛼 is the scaling parameter
or exponent, both of which are to be estimated from the data on SHPE areas (A) for each of the DJF, MAM,
JJA and SON seasons, and f (.) refers to the probability distribution for (.). The rate at which the frequency
of SHPEs decays with increasing area is measured by 𝛼, the scaling parameter. We can also refer it to the
slope of the SHPE area distribution. A large scaling parameter indicates fewer large-area SHPE events. In
contrast, a smaller scaling parameter suggests a higher frequency of large-area SHPEs. A minimum area Amin
is required for the power law to be admissible — events that lead to power law type distributions are most
evident when the observations are greater than some threshold at the tail of the distribution. The scaling
parameter may vary by the season reflecting different climate mechanisms described in section 4.3.

Scaling analysis (i.e., the identification of the scaling parameters of the power law or heavy tail distribution)
of areal coverage of precipitation has been pursued in the past through analyses of event-driven informa-
tion or satellite imagery products using relatively limited data records and for regional cases. Areal scaling
of widespread extreme precipitation over longer durations that is contiguous at the continental scale has not
been attempted. As seen from the results so far, SHPEs impact large areas. It is hence of interest to determine
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Figure 10. Results from the scaling analysis for the areas of SHPEs. (a) Solid-line indicates the power laws detected for
areas of SHPEs. The associated p values from the bootstrap shown in the inset text. The dashed line refers to median
Amin. The p values also show that the power laws cannot be rejected. (b) The distribution of the scaling exponents (α)
for the DJF, MAM, JJA, and SON seasons with their median values.

the inherent scaling relations that will enable us to understand how unusual it is to have extreme precipita-
tion footprints that large in nature. Previous studies in this line have empirically identified power laws for
rainfall magnitude and areal coverage that explain the underlying self-organization and scaling behavior
(Arakawa, 2006; Devineni et al., 2015; Dickman, 2003; Gupta & Waymire, 1993; Lovejoy, 1982; Rajagopalan
& Tarboton, 1993; Sapozhnikov & Foufoula-Georgiou, 2007; Schertzer & Lovejoy, 1987).

For estimating the power laws, we chose to follow the approach developed by Clauset et al. (2009). Clauset
et al. (2009) proposed a formal hypothesis testing based procedure to select Amin (i.e., the lower bound for
the applicability of a power law), and to estimate 𝛼 ( the scaling exponent given Amin) using maximum likeli-
hood. They also provide an approach to perform goodness-of-fit tests and generate a p value statistic based on
a bootstrap resampling strategy to assess the probability that a power law distribution may be reasonable for
a given data set. These steps are implemented using the “poweRlaw” package in the open source software R
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(Gillespie, 2015). In our analysis, we used the continuous version of the algorithm with 5000 bootstrap
samples. Interested readers can refer to Gillespie (2015) for details on the estimation procedure.

In Figure 10, we present the results. The complementary cumulative distribution function (or the survival
function P(A> a)) of the data, the fitted power law, the p value for the significance of the power law fit
for each season, and the median value of Amin is shown in Figure 10a. The box plots (sans outliers) of the
scaling exponent selected across the bootstrap samples are presented in Figure 10b. A p value greater than
0.1 indicates that the null hypothesis, which states the power law is suitable for the data, cannot be rejected
at the 90% confidence level, and the higher the p value, the higher the plausibility. This interpretation is
consistent with Clauset et al. (2009) and (Gillespie, 2015). From Figure 10a, we can observe that power law
appears to be suitable (p value >0.1) for all the seasons. Amin (in units of 106 km2) is varying from 1.72 to
3.58. For reference, 1.72 ×106 km2 is approximately four times the area of California. Hence, power laws
are admissible for SHPEs that have a sizeable areal extent. Given 54, 58, 103, and 204 SHPEs identified in
the DJF, MAM, JJA, and SON seasons (1900–2014), there are 24 SHPEs (∼45%) in the DJF season with an
area greater than 1.96× 106; there are 31 SHPEs (∼53%) in the MAM season with A> 1.72× 106; there are
34 SHPEs (∼33%) in the JJA season with A> 2.62× 106; and there are 21 SHPEs (∼10%) in the SON season
with A> 3.58× 106. It can hence be assumed that if there is a power law structure to SHPEs, it may be at
significantly larger spatial scales, and, the DJF and MAM seasons seem to have a higher percentage of SHPEs
that exhibit this self-organization. For JJA and SON, the threshold (Amin) areas are much higher than the
DJF and MAM seasons, indicating that in JJA and SON seasons, the scaling manifests only for significantly
large SHPEs.

Based on the magnitude of the p value, the most reliable results are the DJF and MAM seasons. All the sea-
sons have a median scaling exponent (𝛼) greater than 3, indicating a finite first and second moment (i.e., a
well defined mean and variance) for the power law distribution (Newman, 2005). They range from 3.7 to 6.2.
Based on the distribution of 𝛼, we can say that the scaling exponents for the DJF and MAM are comparable
and lower, while the JJA and SON seasons have higher values for 𝛼. We can also see this from the slopes of
the fitted lines shown in Figure 10a. The slope (or the scaling parameter) of the fit for DJF is smaller than
the other fitted lines. However, 𝛼 values for the JJA and SON seasons have more uncertainty. A lower scal-
ing exponent indicates a higher frequency of large-area SHPEs, or, a higher probability of exceedance for tail
events. A different way of interpreting the scaling exponent is that it is the rate of change of the exceedance
probability (survival function, P(A> a)) with the change in the areal extent. A lower value indicates a slower
decay, or asymptotic convergence, a fatter tail in the distribution of the areas, and hence more likelihood
for large areal extent events. Depending on the antecedent soil states and the orientation of the drainage
network of the terrestrial hydrologic system, these large SHPE areal events can cause significant flooding.
SHPEs in the DJF and MAM seasons are prime candidates for this phenomenon. DJF and MAM are also the
seasons during which the midlatitude jet stream is persistent in time, and, in conjunction with the atmo-
spheric blocking phenomenon (Booth et al., 2017; Pfahl & Wernli, 2012), enables the delivery of extreme
moisture over relatively large contiguous areas.

In summary, while power law seems to be suitable to explain the underlying scaling behavior for SHPEs in
all the four seasons, based on the values of Amin and 𝛼 and the p value, the SHPEs in DJF and MAM seem
to show a stronger evidence for such self-organization. A thorough investigation into the physical processes
leading to such large-scale organization, that is, how does the climate system organize over these scales, is
required to understand their causality.
4.4.2. Inference and Prediction of the Spatial Risk
In the previous section, we attempted to quantify the frequency distribution of the areas of SHPEs using
power laws. In this section, we develop a statistical model for the inference and prediction of the spatial
risk of SHPEs in each season. We quantify risk using the “probability that a given location will be the cen-
troid of an SHPE.” In other words, what is P(Yi = Centroidshpe), where Y i is the spatial coordinate vector,
[lon, lat] for each i, the 1,244 GHCN-D stations. Location can be a GHCN-D station, as in this case, or a
homogenized spatial grid. We explored a minimum number of covariates in geographic and meteorological
predictors for this inference and prediction. Information about the longitude, latitude, and elevation are the
chosen geographic covariates. Long-term meteorological phenomena summarized by the mean and coeffi-
cient of variation of the integrated water vapor transport (IVT) are chosen as the meteorological predictors
(i.e., IVTmean and IVTcv). IVT is the integral of the moisture flux and pressure in the entire atmosphere layer,
thus aggregating the information of winds and PWV . Since we observed pronounced large-scale atmospheric
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behavior during SHPE days (see the discussions in section 4.3), we chose to use IVT derivatives as the mete-
orological covariates that can explain and predict the centroids of SHPEs. IVT has been used previously as
an explanatory variable to understand heavy precipitation, large-scale moisture intrusions to the land, and
ARs (Khouakhi & Villarini, 2016; Lavers & Villarini, 2015; Mahoney et al., 2016; Neiman et al., 2008; Zhang
& Villarini, 2018; Pan & Lu, 2019). The purpose of this inference and prediction scheme is to create a model
that accurately identifies the chance of any location in the United States being the centroid of an SHPE. We
will hence be able to predict the central location of the high-risk regions associated with SHPEs for each
season. This, together with the auxiliary information about the major and minor principal axes, orientation
and areas can be used to simulate the spatial extents. The details of the model are presented next.

First, for each season, we have taken the corresponding SHPEs and assigned their Centroidshpe to a nearest
GHCN-D station. Note that since the centroid of an SHPE is the joint first moment computed from the vector
of the spatial coordinates, it does not have to be a physical station. By assigning the Centroidshpe to its nearest
GHCN-D station, we are creating measurable geographic covariates (longitude, latitude, and elevation) for
training the model. Each of these stations —“adjusted centroids”— will also be assigned a binary indicator
1 to register the occurrence of an SHPE; that is, the station is now the center of an SHPE. The remaining
GHCN-D stations will be assigned a value of 0 as a token for nonoccurrence of an SHPE; the other stations
are not the center of any SHPE. Hence, we now have a dependent variable Y as a binary indicator for each
of the 1,244 stations, and three geographic covariates for each station —their longitudes (lon), latitudes (lat)
and elevations (elev). As mentioned above, we did this data preparation for each of the four seasons. Since
the DJF, MAM, JJA and SON seasons have 54, 58, 103 and 204 SHPEs, respectively, the upper bound on the
number of “ones” in the dependent binary variable Y is 54, 58, 103 and 204 for each season. The number of
“ones” in Y for a season is not equivalent to the number of SHPEs in that season since multiple events can
be assigned to the same nearest stations. After assigning the nearest station as the “adjusted centroid” for
each of the events, we have 40, 57, 91 and 171 “ones” in the DJF, MAM, JJA, and SON seasons.

Next, we calculated the long-term average (mean) and coefficient of variation (cv) of the daily vertically
Integrated Water Vapor Transport (IVT) for the 1850–2014 period (165 years) for each 2◦ × 2◦ grid over the
United States. To compute IVTmean and IVTcv metrics, we collected 165 years of daily specific humidity (SH),
component vectors of wind (V ; horizontal and vertical components as u and v, respectively), and geopoten-
tial height fields. These records (provided by the NOAA/CIRES V2c Reanalysis data set (Compo et al., 2011))
are obtained along 15 pressure levels between the Earth's surface (Psurface = 1, 000-hPa) and 300-hPa. We
computed IVT according to the following formula:

IVT = 1
g ∫

300

Psurface

q.Vdp = 1
g

√√√√(
∫

300

Psurface

q.udp
)2

+
(
∫

300

Psurface

q.vdp
)2

(4)

where q refers to specific humidity (SH , kg/kg), V to wind vector [m s−1], dp to the pressure difference
between two adjacent vertical levels, and g to the acceleration induced by gravity (9.81 m s−2). The daily IVT
values (kg m−1 s−1) are calculated at 2◦ × 2◦ spatial resolution globally for the period of 1850–2014. For each
grid, we then summarize this daily data using the mean and coefficient of variation (i.e., the standard devi-
ation relative to the mean) for the four seasons separately. The 1,244 GHCN-D stations then get these two
additional meteorological covariates for each of the DJF, MAM, JJA and SON seasons through a standard
search, in which GHCN-D[lon,lat] ∈ IVT[lon,lat]. In simple terms, we locate the grid that the GHCN station is
part of, and assign the seasonal IVTmean and IVTcv of that grid to this GHCN station. Due to the wider spatial
resolution of the IVT mesh grid, multiple GHCN-D stations part of the same grid get the same IVTmean and
IVTcv values. Ultimately, each station from the list of 1,244 stations will have the IVTmean and IVTcv values
in each of the DJF, MAM, JJA, and SON seasons.

We model Y as a Binomial distribution whose probability (P(Yi = 1)) is estimated using an inverse logistic
function on a possible set of linear additive covariates described above. Yi = 1 indicates that station i is the
centroid of an SHPE, and Yi = 0 indicates otherwise.

Yi ∼ Binomial
(

pi
)

logit(pi) = 𝛿 + 𝛽1loni + 𝛽2lati + 𝛽3log(elevi)
+𝛽4IVTmeani

+ 𝛽5IVTcvi

or
P(Yi = 1) = logit−1 (𝛿 + 𝛽1loni + 𝛽2lati + 𝛽3log(elevi)

)(
+𝛽4IVTmeani

+ 𝛽5IVTcvi

)
(5)
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Table 2
Summary of the Stepwise GLM for Quantifying the Probability That a GHCN-D Station Will Be an SHPE
Centroid

𝛿 + 𝛽1lon+ 𝛽2lat + 𝛽3log(elev)+ 𝛽4IVTmean + 𝛽5IVTcv

Coefficients DJF MAM JJA SON
𝛿 −30.253** (4.127) −20.749* (5.094) −29.905** (5.635) −20.231** (3.713)
𝛽1 −0.101** (0.022) — −0.107** (0.031) −0.0435** (0.016)
𝛽2 — 0.290** (0.088) −0.193** (0.059) −0.058* (0.023)
𝛽3 1.131** (0.242) 0.588* (0.265) 0.376* (0.183) 0.700** (0.136)
𝛽4 0.204** (0.044) 0.253** (0.058) 0.405** (0.062) 0.311** (0.053)
𝛽5 6.345* (2.498) −8.035** (2.798) 16.966** (4.432) 4.645** (1.599)
AIC 260.81 404.06 568.99 902.64

Note. The spatial covariates are the coordinates (longitude and latitude) and elevation information (meters
above mean sea level (MSL)) as well as Integrated Water Vapor Transport (IVT). Results from the four
seasons are shown in separate columns. Values in parentheses denote the standard errors. ‘—’ indicates
that the covariate is not selected in the stepwise GLM.
*p value <0.05. **p value <0.001.

In Equation 5, Y i is a vector of “ones” and “zeros” indicating whether or not the station was the “adjusted
centroid.” 𝛿, 𝛽1, 𝛽2, 𝛽3, 𝛽4, and 𝛽5 are the coefficients for the regression model (i.e., scaling factors of the geo-
graphical and meteorological predictors). We used the stepwise generalized linear regression model (GLM)
framework with a logistic link function (Dobson & Barnett, 2008) to estimate the regression coefficients and
identify the best subset predictors. Stepwise regression is a systematic method for adding and removing the
existing terms from the formulated GLM based on their statistical significance in explaining the response
variable (logit(pi) here). The summary of the stepwise GLM is presented in Table 2.

In Table 2, the estimated regression coefficients, their standard errors and the level of statistical significance
(at 0.001 or 0.05 level), as well as the Akaike information criterion (AIC) (Akaike, 1974) for the final model
are presented for each of the DJF, MAM, JJA, and SON seasons. Based on the results from the stepwise
GLM, it is evident that the station elevation and the two meteorological covariates, IVTmean and IVTcv are
significant and useful in explaining the probability that a location will be the centroid of an SHPE, for all
the four seasons. Longitude is a significant covariate for the DJF, JJA and SON seasons, and latitude is a
significant covariate for the MAM, JJA and SON seasons.

For the DJF season, we find that the longitude covariate has a negative coefficient, while elevation, IVTmean,
and IVTcv have positive coefficients. We hypothesize that the positive coefficient for the elevation covari-
ate (which indicates that there is a greater probability for stations in higher elevations to be the centroids
when other covariates are held constant) is due to the interaction of orographic barriers such as the moun-
tainous terrain of Sierra Nevada and Coast Ranges with moisture transport to the region, causing enhanced
large-scale uplift and heavy downpours (e.g., see Galewsky & Sobel, 2005; Jiang, 2003; Leung et al., 2003;
Pandey et al., 1999). Latitude is not a significant covariate. For simplicity, we follow the “divide by 4 rule” sug-
gested by Gelman and Hill (2006) to interpret the regression coefficients in terms of the maximum difference
in P(Yi = 1) corresponding to a unit difference in one covariate, while others are unchanged. Accordingly,
for the DJF season, P(Yi = 1) decreases by 3% as we move west to east (unit increase in the longitudinal
direction, that is, 1◦ ∼110 km), increases by 28% as we move up in altitude (elevation units of 1 m), increases
5% with a unit increase in the mean value of IVT and increases by 158% with a unit change in the variance
of IVT.

For the MAM season, P(Yi = 1) increases by 7% as we move south to north (unit increase in the latitudinal
direction, i.e., ∼110 km), increases by 15% as we move up in altitude (elevation units of 1 m), increases by
6% with a unit increase in the mean value of IVT and decreases by 200% with a unit change in the variance
of IVT.

For the JJA season, P(Yi = 1) decreases by 3% as we move west to east, decreases by 5% as we move south to
north, increases by 9% as we move up in altitude, increases by 10% with a unit increase in the mean value
of IVT and increases by 424% with a unit change in the variance of IVT.
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Figure 11. Probability of any station being the centroid of an SHPE as derived from the inference model for the
(a) DJF, (b) MAM, (c) JJA, and (d) SON seasons. The centroids of SHPEs calculated from the precipitation observations
are adjusted to their nearest stations and overlaid on the map as hollow circles.

Finally, for the SON season, P(Yi = 1) decreases by 1% as we move west to east, decreases by 1% as we move
south to north, increases by 18% as we move up in altitude, increases by 8% with a unit increase in the mean
value of IVT and increases by 116% with a unit change in the variance of IVT.

When we compare these changes across seasons, we find that the change in P(Yi = 1) is around 2% with
change in longitude, between 1% and 7% with change in latitude (with MAM having the largest change
of 7%), between 9% and 28% with change in elevation, between 6% and 10% with change in IVTmean and
between 116% and 425% with change in IVTcv. It is interesting to note that, for elevation, the most significant
change is seen in the DJF and SON seasons where much of the SHPEs are geographically aligned to the
Rocky Mountains in the west and the Appalachian in the east. SHPEs in the MAM and JJA seasons are
mostly distributed in the plane lands, and their changes are lower than the changes in the mountainous
regions. Further, we see that P(Yi = 1) is sensitive to the spatial difference in IVTcv with the most significant
effect in the JJA season.

Following the construction of the logistic regression models for each season, we have estimated probabilities
for every single GHCN-D station using the inverse logistic function on the model selected covariates. This
process results in the derivation of the likelihood that a station will be the centroid of an SHPE. Figure 11
presents these results for each of the four seasons.

In Figures 11a–d, the black-colored hollow circles indicate the locations of the “adjusted centroids” of
SHPEs. The color-bar in Figure 11 shows the probability P(Yi = 1) as predicted from the logistic model.
Darker red-colored shades refer to a higher probability that the station will be an SHPE centroid. Based on
the comparison (see the majority of stations would get a higher P(Yi = 1)) when they are neighboring or
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Figure 12. Predicted probability of any grid (2◦ × 2◦) being the centroid of an SHPE based on the spatial risk model for the (a) DJF, (b) MAM, (c) JJA,
and (d) SON seasons. The darker shaded areas indicate a higher chance of SHPE risk.

near an SHPE centroid), we can presume that logistic regression model returns accurate predictions in all
four seasons. It should also be noted that the model's identifiability also improves with the increase in the
density of the centroids.
4.4.3. Assessing the Robustness of the Model and Predicting the Spatial Risk
We have conducted a leave-k-out cross-validation strategy to examine the robustness of the model before we
apply it for predicting the spatial risk of SHPEs at the United States level.

For each season, we randomly select and leave out 10% of the 1,244 GHCN-D stations (i.e., 125 stations), train
the model (Equation 5) using the remaining 1,119 stations, and then predict P(Yi = 1); ∀ i ∈ (1, 2, … , 125).
In other words, for the 125 left out GHCN-D stations, we predict their probability of being a centroid, using
the trained model. From this predicted P(Yi = 1) for each of the 125 stations, we draw a random trail (0
or 1) from a Bernoulli distribution to indicate whether or not that station is the centroid of an SHPE. Next,
we compute the proportion of these predicted centroids in the 125 stations; p1 = #of predicted 1s

125
. We also com-

pute the observed proportion of actual centroids from the 125 left out samples; p2 = #of predicted 1s
125

. An error
metric as the difference between the observed and the predicted proportions is computed; e = p1 − p2. This
procedure is repeated 1,000 times to obtain the null distribution of the error metric. We verified the null dis-
tribution of the error against zero error using a standard t-test and found that the null hypothesis that the
error is 0 cannot be rejected (at the 10% confidence level) for all the four seasons.

Besides the error metric on the overall proportion of predicted centroid, we also verified the model results
using a much more stringent measure, the hit-rate. As before, for the 125 left out GHCN-D stations, we
predict their probability of being a centroid using the trained model on the 1119 stations. From this predicted
P(Yi = 1) for each of the 125 stations, we draw a random trail (0 or 1) from a Bernoulli distribution to
indicate whether or not that station is the centroid of an SHPE. We compute hit-rate as the fraction of total
“ones” among the real id in the 125. In other words, in a random sample, if there are m centroids, we verify
what fraction of m the model can predict accurately. We repeat the Bernoulli draws 100 times and take an
expected hit-rate. The leave-10%-out cross-validation procedure itself is repeated 1,000 times to obtain the
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distribution of expected hit-rate across multiple randomly left out samples. For all the seasons, the mean
of the distribution of the hit-rate ranges between 7% and 17%, and the maximum of the distribution ranges
between 14% and 63%. It has to be noted that the hit-rate we are computing inspects for an exact match of the
station without any scope for spatial errors. Hence, it is a highly conservative measure. We also found that
the nonoccurrence hit-rate is above 90% in all seasons, indicating that the model structure is also sufficiently
robust in avoiding false alarms.

Finally, we provide predicted gridded spatial risk maps based on the models for each season. To do so, we
applied the logistic model on the longitudinal and latitudinal coordinates and elevation information as well
as the IVTmean and IVTcv for the gridded IVT mesh over the United States in each season. We considered
the center of each 2◦ × 2◦ grid as the coordinates for the longitude and latitude. We extracted the elevation
(in meters) at 0.125◦ resolution from the GMTED2010 (Global Multi-resolution Terrain Elevation Data)
with respect to the geoid WGS84, provided by the U.S. Geological Survey (Danielson & Gesch, 2011). Given
the longitudes and latitudes of the IVT grid, we assigned the nearest elevation information available in the
GMTED2010 gridded mesh data to the corresponding IVT grid. Figure 12 presents the final gridded spatial
risk maps in terms of the chance of each grid cell being the centroids of the SHPEs in each DJF, MAM, JJA,
and SON seasons.

There are grid cells in each panel of Figure 12 featuring darker shades of red colors. The darker patterns
indicate that a higher probability is associated with those grid cells for observing the centroids of SHPEs
over this region. Considering Figures 11 and 12 in conjunction, one can realize that the SHPE risk model for
each season can accurately reveal the centroids for SHPEs over the United States. The shaded regions with
darker red-colored pattern can entirely depict similar spatial patterns with respect to the discrete points that
we presented earlier in the Results section (i.e., in section 4, Figures 4–7 and 11). Hence, we summarize that
the model formulation is robust, and the model performance is reliable for each of the DJF, MAM, JJA, and
SON seasons across the conterminous United States.

5. Summary and Conclusions
This study presents a new way of quantifying the spatial manifestation of extreme precipitation. We intro-
duce SHPE —simultaneous heavy precipitation event— to understand the daily compound effects of the
spatially oriented extreme precipitation events (>99th percentile) for each of the DJF, MAM, JJA, and SON
seasons across the conterminous United States (1900–2014). The spatiotemporal characteristics of SHPEs
are assessed to discern their properties in different seasons. Their spatial manifestations are quantified using
power laws for areal extents and inverse logistic functions for the probability of centroids. Ultimately, these
models can be used as a basis for several floodplain management strategies and reliability analyses of the
infrastructure systems.

We analyzed a high-quality data set of 1,244 daily GHCN-D precipitation observations distributed through-
out the United States starting from 1 January 1900 to 31 December 2014 and found that there are 54, 58, 103,
and 204 SHPEs in the DJF, MAM, JJA, and SON seasons. We identified the centroids and lateral stretches for
these SHPEs and thus quantified them as quasi-elliptical. Then, we briefly explained the synoptic circulation
patterns, including the Z500 anomalies and PWV fields corresponding to the selected SHPEs in over the U.S.
Pacific Northwest, the Midwest, and along the East Coast. To predict the spatial risk, we also developed a
statistical inference model that utilizes the spatial coordinates with elevation information, as well as average
and coefficient of variation obtained from the historical IVT values over the United States. We examined the
robustness and performance of the developed model using a leave-k-out cross-validation technique. Next,
we adopted this predictive model for individual seasons and applied it to IVT gridded data and presented
the estimated spatial risk manifestation in each of the DJF, MAM, JJA, and SON seasons nationwide.

The summary and concluding remarks related to the spatial manifestation of SHPEs are as follows:

1. Between 1900 and 2014, there was no significant trend in the annual frequency of SHPEs that occurred
throughout the United States. However, we found a quasi-convex behavior of the long-term mean with
slightly increasing frequency in the second half of the 20th and early 21st centuries. On average, three to
four SHPEs occurred each year.

2. In the DJF season, a majority of SHPEs are manifested in the Cascade Range and the U.S. Pacific coast
region as circular shapes (a rounded spatial footprint with l2/l1 ratio close to 1). The major axes of SHPEs
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(i.e., l1) are mostly between 650 and 1,500 km and oriented in the SW-NE direction. SHPEs in this season
also have the least frequency of occurrences in 1900–2014, but they have maximum variations in terms
of the second axis of SHPEs (l2) relative to the other three seasons.

3. SHPEs in the MAM season are mostly manifested in the central to south central United States with a
few SHPEs along the northeast belt. The l1 length ranges mostly from 850 to 1,600 km. The orientation
of SHPEs in the MAM season is in both SW-NE and SE-NW directions (the median of the distribution of
𝜃 shows a small negative angle referring to the SE-NW direction). SHPEs located in the central United
States have more circular manifestations with larger areas compared to those along the U.S. northeast.

4. The 103 SHPEs that occurred in the JJA season have the largest areas and longer spatial axes (950 to
1,550 km) on average. They are mostly manifested in the U.S. Midwest and the East Coast. The majority
of SHPEs that occurred across the Midwest indicates a mixture of circular and elliptical formations,
while those in the East Coast represent elliptical manifestation. The orientation of SHPEs in this season
is along both SW-NE and SE-NW directions with slightly more SHPEs with a SE-NW orientation.

5. The maximum number of SHPEs during the 1900–2014 period occurred in the SON season with 204
SHPEs (∼50% of total) and three spatial clusters over the U.S. West Coast, the Midwest, and the northeast
regions. SHPEs in the Midwest have mostly circular formations, while those in the northeast indicate
elliptical configurations on the ground. Most SHPEs in the SON season are orientated in the SW-NE
direction and l1 has a median of 1,050 km derived from the distribution of the entire 204 SHPEs. We also
realized that several SHPEs with larger areal extents were manifested in the Midwest cluster of the SON
season.

6. We used compositing analysis to confirm that the SHPEs found were associated with the expected
large-scale atmospheric circulation patterns. For the Pacific Northwest in DJF, the Midwest in JJA, and
the northeast/Mid-Atlantic in SON, the composites show upper-level troughs or wave-like structures that
could support storm development, or at the least would organize the low-level moisture that is found in
PWV composites.

7. We examined the self-organization structure and potential scaling process of the areas of SHPEs and
found that for all seasons, the frequency distribution of the areas of SHPEs can be explained using power
laws. SHPEs in the DJF and MAM seasons show more evidence of self-organization. The results showed
that ∼45%, ∼53%, ∼33%, and ∼10% of SHPEs in the DJF, MAM, JJA, and SON follow the power law
structure. These SHPEs have substantially larger spatial scales.

8. In addition, we modeled the spatial risk of SHPEs in each season using a logistic regression model. We
developed an inference (and predictive) model that can be used to estimate the probability of SHPE
centroid for any geographical location across the United States using spatial (longitude, latitude, and
elevation) and meteorological (the mean and the coefficient of variation of IVT) predictors. IVT captures
the dynamics of water vapor, pressure systems, and wind variabilities inside a column of the atmosphere,
and hence, serves as a good meteorological covariate. Results indicate that the parsimonious model with
minimum covariates can be used to accurately quantifying the centroids of SHPEs in each DJF, MAM,
JJA, and SON seasons. In particular, the average of historical IVT and its coefficient of variation, as well
as the elevation information happen to be the most statistically significant predictors in quantifying the
spatial manifestations of SHPEs in all seasons. We used the trained model on a fully gridded data set
of predictors and presented the probabilistic spatial risk maps corresponding to the centroids of SHPEs.
These seasonal risk maps show the probability of each spatial location (longitude and latitude) on the
ground in the United States being the center of extreme precipitation events.

The synoptic patterns derived in our compositing analysis (Figure 9) affirm previous work (e.g., Agel
et al., 2019; Loikith et al., 2017; Marquardt Collow et al., 2016), which is a combination of a strong upper-level
wave and near-surface moisture convergence are the most common elements of the atmosphere that are
required for generating heavy precipitation events in the midlatitudes, in the absence of a tropical cyclone.
From case studies, we know that there are important subtleties in any storm that can have big impacts on
the precipitation amount, and these are often averaged out in composites. However, knowing the most likely
synoptic-scale organization of the atmosphere is a critical first step in fully understanding the physics of
these extreme precipitation events.

The spatial patterns, climate mechanisms and the spatial risk models for the United States provide essential
insights for understanding the spatial manifestation of widespread extreme precipitations on the ground.
The findings and models discussed in this work can be directly used by floodplain managers, insurance
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agencies, and reservoir operators. For example, one can quantify the vulnerability of residential structures
and infrastructure systems that are geographically under or adjacent to SHPEs and then report the prob-
abilistic exposure to heavy precipitation in each season. The SHPE derivations we presented in this work
provide a new path to analyze the footprints of heavy downpours associated with the different rainstorm
systems at the local to global scales. The SHPE database will benefit the entire hydroclimatology commu-
nity ranging from reservoir managers and local governments to earth system scientists and climate change
researchers. The uniformness of the analysis and availability of the database countrywide improves upon
and complements other regional-scale studies in this direction.

For hydrologists, the SHPE database provides a unique tool to explore and predict the spatial extent of large
river floods. It is also important to explore whether the current generation of global circulation models
adequately represents the spatial features depicted in these ground-based measurements, and how they
could be improved to describe these spatial features better. Our analysis also provides a pathway to explore
whether phenomena such as the ENSO, Pacific Decadal Oscillation, and North Atlantic Oscillation translate
into patterns of organization in the tropics and extratropics that eventually lead to large areas associated
with extreme rainfall showing a specified geographic character.

In closing, we would like to point out that we also validated the number of identified SHPEs using a gridded
product (see Appendix A) and demonstrated that there is no significant difference in the identified SHPEs
between those from the ground-based data set and the gridded data set. Further, it should also be noted
that the algorithm is generalized enough to take in different values for the extreme rainfall threshold and
RoE threshold. A lower extreme rainfall threshold will allow for the analysis of less intense events, and
a lower RoE threshold will yield more SHPEs (see Appendix B). The SHPE database can serve as input
training data for modern machine learning algorithms to detect more intricate spatiotemporal patterns.
Further investigations are required to accurately quantify the spatial manifestation of smaller storm events
and coastal-oriented events that are influenced by land-ocean contrast or limited availability of data records.
These are some of our main research tracks to address in the near future.

Appendix A: Validating SHPEs Using Gridded Precipitation Data
A1. Gridded Precipitation Data: CPC Unified Gauge-Based Daily Precipitation

To ensure that our findings are not influenced by the sparse network of ground-based rain gauges, we also
corroborated them with the results obtained from applying the SHPE detection algorithm on the daily grid-
ded precipitation data from the NOAA Climate Prediction Center (CPC) Unified Gauge-Based Analysis of
Daily Precipitation over the CONUS (Xie et al., 2007). NOAA/OAR/ESRL PSD (Boulder, CO) provides the
CPC daily U.S. Unified Precipitation data. The CPC unified gauge-based daily precipitation database has
a 0.25◦ × 0.25◦ spatial resolution over the United States (and 0.5◦ × 0.5◦ at the global scale) that extends
from 20.125–49.875◦N and 230.125–304.875◦E. Hence, it provides a daily grid of precipitation data (a matrix
with a dimension of 300× 120 (longitude, latitude)) over the United States since 1948. We have processed
and organized 67 years of daily gridded data from 1 January 1948 to 31 December 2014. The CPC unified
gauge-based precipitation gridded data are developed by combining all applicable data sources available
at the NOAA/CPC including ground-based, historical, satellite, and numerical weather information using
the optimal interpolation (OI) objective analysis technique (Chen et al., 2008), and thus can be sufficiently
reliable for our corroboration and validation.

A2. Validating SHPE's Centroids

Since the distribution of the GHCN-D stations across the United States is not homogeneous, we verify
whether any substantial influence associated with the station density might be affecting our findings. To
corroborate our results (specifically the spatial distribution of the centroids of SHPEs), we extract the precip-
itation fields corresponding to 419 SHPEs from the CPC daily U.S. Unified Precipitation data. Two hundred
twenty-seven SHPE days were identified within the common record of 1948–2014. We compare the centroids
of SHPEs derived from the gridded precipitation product with the centroids detected from the GHCN-D
observations as follows.

1. For each grid (0.25◦ × 0.25◦ in the matrix of 300× 120) of CPC daily U.S. Unified Precipitation data, we
calculate the 99th percentile of the entire precipitation (nonzero) for the 1948–2014 period (24,472 days).
The 99th percentile is considered as the extreme threshold for each grid.
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2. We take the 227 days identified as SHPE days within the period of 1948–2014 and derive the gridded
precipitation map from the CPC daily U.S. Unified Precipitation data.

3. Then, we keep only those grids whose intensities are larger than their corresponding 99th percentile
threshold values. We carry on this filtering for all the 227 SHPE-related maps of gridded precipitation
data.

4. Next, we calculate the median of longitudes and latitudes of the resulted grids (step 3 above) for each
SHPE date. The median will be sufficiently robust against the influence of potential outliers (if any).

5. To calculate the deviation between two centroids (i.e., one from the GHCN-D station-based observations
and another from the CPC daily U.S. Unified Precipitation data), the Euclidean distance metric between
two centroids (out of 227 pairs) is used:

deviationC = |Cstation − Cgrid| = √
(lons − long)2 + (lats − latg)2 (A1)

where C, s, and g refer to the Centroid, station and grid.
6. Ultimately, the summary statistics of deviationC are estimated (in both degree and geographical dis-

tance). The median of deviationC is 189.65 km. The IQR, mean, and 90th percentile are 227, 270.69, and
530.14 km, respectively.

This experiment demonstrates that the difference between the identified centroids from the GHCN-D obser-
vations and the CPC daily U.S. Unified Precipitation data is insignificant (less than ∼200 km that can be
translated to less than 2◦ on the ground, which is comparable to the spatial resolution of large-scale atmo-
spheric circulation reanalysis data). We confirmed that the influence of spatial station density across the
United States is negligible, and the presented findings and information based on the rain gauges are valid.

Figure B1. Number of identified SHPEs using different sets of stations across all seasons (a), and separate DJF, MAM,
JJA, and SON seasons (b) based on the leave-k%-out test at 99th percentile of the rate of extremes (RoE). The median
values are presented across 100 simulations.
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Appendix B: Sensitivity to Station Density and RoE Threshold
We designed two experiments to investigate whether there is any systematic influence on the number of
identified SHPEs due to limited GHCN-D precipitation stations or the RoE threshold. For instance, how
many different SHPEs could be tracked if there were more or less number of rain gages while using the 99th
percentile of RoE (used threshold in section 3 above), or different RoE thresholds. These experiments are
described below.

B1. Sensitivity of Number of Identified SHPEs to the Number of GHCN-D Stations

Considering the RoE threshold of 99th percentile (as used in section 3 above), we followed a leave-k%-out
test, so that each time a certain number of stations from these 1,244 stations are randomly taken out and
the remaining stations are used to apply our framework to identify how many SHPEs exist in total, and
per season (DJF, MAM, JJA, and SON). We considered k equal to 0 (all 1,244 stations), 5, 10, ..., 85, and
90% of all stations; each time, that many stations will be randomly set aside. Thus, the number of stations
that will remain are respectively 1,244, 1,182, 1,120, 1,057, 995, 933, 871, 809, 746, 684, 622, 560, 498, 435,
373, 311, 249, 187, and 124. Then, we calculated RoE across all 115-year daily values (identical to the steps
given in section 3 in the paper) and used the 99th percentile of distribution of RoE for each k, followed
by counting how many SHPEs exist in total, and per season. We repeat the entire procedure 100 times to
account for sampling uncertainty. In Figure B1, we show the results from this test for all the k values against
the median number of identified SHPEs across the 100 simulations. There is very little sensitivity of the
number of SHPEs to the number of stations. The overall SHPEs remain around 1% of the days, and their
seasonal breakdowns are also consistent with what we find based on the 1,244 stations run.

B2. Sensitivity of Number of Identified SHPEs to the Number of GHCN-D Stations and to the
RoE Threshold

To investigate if there will be any significant relationship between the number of identified SHPEs and the
threshold imposed on RoE, we advance the above experiment using different sets of thresholds for RoE.

Figure B2. Number of SHPEs that are identified based on different thresholds (90th, 95th, 97.5th, and 99th percentiles)
of the rate of extremes (RoE) and varying number of stations.
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Figure B3. Spatial distribution of the centroids of SHPEs in the DJF season for 90th (a) and 85th (b) percentiles of rate
of extremes (RoE). 471 and 704 SHPEs were identified if 90th and 85th percentiles of RoE were selected.

We considered four thresholds — 0.90th, 0.95th, 0.975th, and 0.99th percentiles — of RoE distribution. As
before, we repeat the procedure 100 times to account for sampling uncertainty.

The results are presented in Figure B2. As mentioned before, the number of SHPEs that are identified are
approximately (1− p)%, where p is the percentile of the RoE. If we select a 99th percentile, we will approxi-
mately get 1% of the days; if we select 90th percentile, we will get approximately 10% of the days. In general,
(1− p)% of the events show up. It is clear that lowering RoE threshold will allow more spatial events to
show up.

In Figure B3, we present the location (centroids) of the SHPEs for the 90th and 85th percentiles threshold on
RoE (i.e., RoE = 0.08 and 0.067 instead of 0.15 for 99th percentile on RoE). Other events in the DJF season
(471 and 704 SHPEs in total in this season) now show up as SHPEs. In general, the density increases as
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expected. Note that, with a lower RoE threshold, more SHPEs show up over the coastal areas and California
regions.

In conclusion, the two experiments shown above indicate that there will be no bias due to the number of
included stations and varying RoE thresholds. Therefore, we can also infer that a higher-resolution data set
such as a gridded product will not change the proportion of the identified SHPEs. A lower threshold will
yield more events, up to (1− p)%. Hence, some of the events that are not showing up in the runs that have
a 99th percentile on the RoE might show up when that threshold is lowered, and this is an artifact of the
percent number of days in the filter (e.g., see Figure B3 for DJF season and 90th or 85th percentiles of RoE).
Since our interest was on large-area extents, we selected a 99th percentile RoE.
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